ランジュバン方程式について
ランジュバン方程式 (Langevin equation)は、統計力学において、あるポテンシャルの下でのブラウン運動を記述する確率微分方程式である。アインシュタインのブラウン運動の理論を受けてポール・ランジュバンによって最初に示された。
最も簡単なランジュバン方程式は、ポテンシャルが定数であるとして調べられたものであり、質量 m のブラウン粒子の加速度 a が、粒子の速度 v に比例する粘性力(ストークスの式、β は抵抗係数)と、媒質中の分子による衝突の連続的な系列の効果であり、ある確率過程であるランダム力 η(t) との和として表現される。
電気回路の抵抗器における熱雑音など他のブラウン運動系でも本質的に同様な方程式が成り立つ。
しばしばランジュバン方程式を解くことなく、多くの興味深い帰結が揺動散逸定理によって得られる。解が必要とされるならば、これを解くための標準的な方法はフォッカー・プランク方程式を用いることである。これは、時間依存の確率密度により満足される決定論的方程式を与える。また、数値的な解はモンテカルロ法を用いたシミュレーションにより得られる。さらに、統計力学と量子力学との類似性を利用して(例えば、フォッカー・プランク方程式はいくつかの変数のスケールを変換することによってシュレーディンガー方程式に変換できる)経路積分のような他の方法も用いられる 。
揺動散逸定理(ようどうさんいつていり、英: fluctuation-dissipation theorem, FDT)とは、「熱力学的平衡状態にある系が外部から受けたわずかな摂動に対する応答(線形近似できるとする)が、自発的なゆらぎに対する応答と同じである」という仮定から導かれる統計力学の定理である。つまり、熱力学系の平衡におけるゆらぎと抵抗(抗力)の間にある関係を示すものである。
概要
一般的な揺動散逸定理は、熱平衡状態における微視的な分子運動と巨視的に観測できる応答との関係を示すものであり、線形モデルで物質の微視的性質を説明する線形応答理論によって説明される。
この仮定は外力が分子間力に比較して小さく、緩和速度に与える影響が無視できる、ということに当たる。
具体例
揺動散逸定理は古くから特殊な場合について知られており、その例を以下に挙げる。
ブラウン運動
1905年、アルベルト・アインシュタインは、ブラウン運動に関する論文を著し、ブラウン運動を起こしている不規則な運動が、流れの中で粒子を引き留める力をも生み出すことを明らかにした。つまり、静止流体でのゆらぎは流体を流す外力を与えた場合の摩擦力、すなわち散逸的な力と共通の原因を有するということである。ブラウン運動に関するアインシュタイン-スモルコフスキーの関係式は次で与えられる:
ここでD は粒子の拡散係数、μ は移動度(外力F に対する粒子の終端ドリフト速度 vd の比 μ = vd/F )であり、この式が両者の関係を示している。またkB はボルツマン定数、T は熱力学温度である。この関係式は1906年にアインシュタインとは独立して、当時のオーストリア=ハンガリー帝国のポーランド人科学者、マリアン・スモルコフスキー(英語: Marian Smoluchowski) が発見している [1]。
熱雑音
1926年、ジョン・バートランド・ジョンソンが熱雑音を発見し[2][3]1928年にハリー・ナイキストがこれを理論的に説明した[4]。電流のない状態では二乗平均電圧 ⟨V 2⟩ は電気抵抗 R 、温度 kBT 、および帯域幅 Δν に依存し、次のようになる:
確率微分方程式(かくりつびぶんほうていしき、Stochastic differential equation)とは、1つ以上の項が確率過程である微分方程式であって、その結果、解自身も確率過程となるものである。一般的に、確率微分方程式はブラウン運動(ウィーナー過程)から派生すると考えられる白色雑音を組み込むが、不連続過程の様な他の無作為変動を用いることも可能である。
背景
確率微分方程式は、ブラウン運動を記述したアインシュタインの有名な論文、および同時期にスモルコフスキーにより導入された。しかし、バシュリエ(1900年)の論文「投機の理論」は、ブラウン運動に関連した初期の業績として特筆すべきである。その後、ランジュバンに引き継がれ、後に伊藤とストラトノビッチが確率微分方程式に数学的基礎付けを行った。
確率解析
ブラウン運動、あるいはウィーナー過程は、数学的には極めて複雑である。ウィーナー過程の経路は微分不可能であり、したがって、微分・積分を行うには、独自の規則が必要となる。確率解析には、伊藤確率解析、ストラトノビッチ確率解析の2つの方法がある。各々には長所および利点があり、初学者は、与えられた状況においてどちらを使うべきか混乱しがちである。しかし、指針は存在するのであり(下記エクセンダール参考文献参照)、伊藤確率微分方程式を等価なストラトノビッチ確率微分方程式に変換でき、再び戻すことも可能である。しかし、その確率微分方程式を立てた際、どちらの解析によったのか、注意を払わなければならない。
数値解
確率微分方程式、特に確率偏微分方程式の数値解法は、相対的に未発達な分野である。通常の微分方程式の数値解に使用されるアルゴリズムの殆どは、確率微分方程式には殆ど有効に使用できず、数値収束が非常に悪いとされている。洋書であるが、P E Kloeden and E Platen, Numerical Solution of Stochastic Differential Equations, (Springer, 1999) は、多くのアルゴリズムを取り扱っている。これら手法には、オイラー・丸山法、ミルスタイン法、ルンゲ・クッタ法等がある。
逆時間確率微分方程式
近年(2020年頃から)、機械学習の分野で「拡散モデル」と呼ばれる、確率分布に基づいてデータを自動的に生成する手法が実用化され非常に注目されている。その方法の中では時間方向を正方向と逆方向に確率微分方程式をそれぞれ解くことが行われる[1]。
定義
典型的には、Bt (t≧0) を、 B0 = 0 を満たす連続時間一次元ブラウン運動(ウィーナー過程)とするとき、積分方程式
を
�
の形に略記したものを、確率微分方程式という。上記方程式は、連続時間の確率過程 Xt の振る舞いを、一般のルベーグ積分と伊藤積分の和で模している。
確率微分方程式の発見論的だがとても有益な解釈は、微小時間間隔 δ において、確率過程 Xt の変化が、期待値 μ(Xt,t)δ、分散 σ2(Xt,t)δ の正規分布に従って変化し、しかも過去の同確率過程の振る舞いと独立である、と見ることである。ウィーナー過程の変化は互いに独立で正規分布に従うことから、こう考えることができる。
関数 μ(x,t) はドリフト係数(drift coefficient)、関数 σ(x,t) は拡散係数(diffusion coefficient)という。確率微分方程式の解として得られる確率過程 Xt は拡散過程(かくさんかてい、英:diffusion process)と呼び、通常はマルコフ過程である。
強解と弱解
[編集]確率微分方程式の理論的解釈は、同方程式の解とは何かによって解釈する。確率微分方程式の解の主要な定義には、強解(きょうかい、英:strong solution)と弱解(じゃくかい、英:weak solution)の二種類ある。 どちらも、確率微分方程式に対応する積分方程式の解となる確率過程 Xt の存在を要件とする。両者の違いは、基礎となる確率空間 (Ω, F, P) にある。弱解とは、確率積分方程式を満たす確率空間と確率過程をいい、強解は、与えられた確率空間の上で定義され、確率積分方程式を満たす確率過程をいう。
幾何ブラウン運動
以下の確率微分方程式、
��
は重要な例であり、この解を幾何ブラウン運動(きかぶらうんうんどう、英:geometric Brownian motion)という。これは、数理ファイナンスにおいて、ブラック・ショールズ・オプション価格モデルで、株式価格の動きを模す方程式である。
伊藤過程
係数関数μとσが、解確率過程Xtの現在の値のみならず、同過程の過去の値、または他の確率過程の現在と過去の値にも依存する、さらに一般的な確率微分方程式が考えられる。この場合、解確率過程 Xt はマルコフ過程ではなく、その解は拡散過程ではなく伊藤過程(Itō process)と呼ばれる。係数関数が現在と過去のXtの値のみに依存する場合、定義する確率微分方程式は、確率遅延微分方程式(stochastic delay differential equation)という。
解の存在と一意性
決定論的な常微分方程式や偏微分方程式と同様、与えられた確率微分方程式の解が存在するか、存在するとして一意か否かを知ることは、重要である。下記は、n次元ユークリッド空間Rnに値を取り、m次元ブラウン運動Bを無作為項とする伊藤確率微分方程式の解の存在および一意性に関する一般的定理である。参考文献に記したエクセンダールの本の §5.2には、証明が記載されている。
T > 0とする。
�
は可測関数で、適当な定数C、Dが存在し、任意のt ∈ [0, T]、任意のx, y ∈ Rnに対し、次の2条件を満たすとする。
)
ここで、
である。 確率変数Zは、{Bs}s≧0により生成されるσ加法族と独立であり、かつ、
を満たすとする。このとき、確率微分方程式、
は、以下の2つの性質を有するtに関して連続な解 を、Pに関して殆ど確実に一意に有する。
2024年12月12日 | カテゴリー:AUTODOCK VINA |